

Neil P. Rossmeissl
Office of Hydrogen, Fuel Cells and Infrastructure
Energy Efficiency and Renewable Energy
October 22, 2002

Reorganization Outcome

5 Year Plan

- Comprehensive plan to accelerate C&S activities
 - Identify technologies requiring standards
 - Formulate teams to create standards
 - Develop training programs for building officials, Fire Marshals and regulators
- Comprehensive plan to formalize the safety standards
 - Establish safety goals for technologies and systems.
 - Establish a protocol for all projects that minimize risk
 - Conduct case studieis
- Identify roles and responsibilities

Hydrogen Today

- Production (9 million tons per year)
 - Steam methane reforming
 - Electrolysis
 - Byproduct
- Uses largely in industrial settings
 - Petroleum upgrading
 - Food processing (hydrogenation)
 - Semiconductor processing
 - NASA (only large-scale fuel use)
- Transporting/Delivery
 - Pipeline
 - Liquid tanker
 - Tube trailer (compressed gas)

Codes and Standards

- Code-making bodies in the US
 - About 20 major developers (excluding federal agencies such as EPA and DOT)
 - Nearly all is done using a consensus process
- Must be adopted by each jurisdiction to be "legal" and binding
 - Approximately 44,000 jurisdictions in the US
 - Federal, state, county, city or town

Code Developers

- International Code Council, Inc. (ICC)
 - Building Officials and Code Administrators International (BOCA)
 - International Conference of Building Officials (ICBO)
 - Southern Building Code Congress International, Inc. (SBCC)
- Underwriters Laboratories (UL)
- National Fire Protection Association (NFPA)
- CSA International
- Society of Automotive Engineers (SAE)
- Institute of Electrical and Electronic Engineers (IEEE)
- American Society of Mechanical Engineers (ASME)
- International Electrotechnical Commission (IEC)
- International Organization for Standards (ISO)
- Compressed Gas Association (CGA)
- Natural Gas Institute (NGI)
- US Department of Transportation
- Occupational Health and Safety Administration (OHSA)

Issues

- Codes & standards are being developed in advance of, or in parallel with, hydrogen-fueled systems
 - Codes & standards development must be coordinated with technology development
 - Efforts should be devoted to R&D efforts to validate proposed standards (i.e., need data to support or validate proposed requirements)
- Coordination is vital
 - All applications involve production, transportation, storage, dispensing, and use of hydrogen
 - A large number of organizations are involved in generating codes & standards

Key Codes

Component	Codes	Status	
Technology			
Production	NFPA 70/ NEC/CEC	mature	
	ASME Boiler-Pressure Vessel Sec. VIII	mature	
Transportation:	DOT	mature	
	49 CFR	mature	
Pipeline	NEC/CEC	mature	
	ANSI/ASME B31.1, B31.8	mature	
Storage	NFPA 50 A: Gaseous Hydrogen	mature (1961)	
	NFPA 50 B: Liquid Hydrogen	mature (1961)	
	ASME Boiler-Pressure Vessel Sec. VIII	mature	
Vehicle Refueling Stations	HV-3: Hydrogen Vehicle Fuel	being developed	
_	NFPA 52: CNG Vehicle Fuel	base for HV-3	
	HV-1: Hydrogen Vehicle Connector	being developed	
	NGV1: NGV connectors	base for HV-1	
Hydrogen Vehicles	HV-3: Hydrogen Vehicle Fuel	being developed	
	NFPA 52: CNG Vehicle Fuel	base for HV-3	
	HV-2: Gaseous Hydrogen Tanks	being developed	
	NGV2: CNG Storage Tanks	base for HV-2	

ISO-TC197

Identification Number	Title	Working Group	Convener (Country)
DIS 13984	Liquid H ₂ - Land Vehicle Fueling System Interface	WG 1	SCC (Canada)
DIS 14687	H ₂ Fuel-Product Specification	WG 3	ANSI (USA)
NP 15594	Airport H ₂ Fueling Facility	WG 4	DIN (Germany)
NP 15866	Gaseous H ₂ and H ₂ Blends Vehicular Fuel Systems	WG 5	ANSI (USA)
NP 15869	Gaseous H ₂ - Vehicle fuel tanks	WG 6	ANSI (USA)
NP 15916	Basic requirements for safety of H ₂ systems	WG 7	DIN (Germany)
WD 13985	Liquid H ₂ - Land vehicle fuel tank		SCC (Canada)
WD 13986	Tank containers for multimodal transport of liquid H ₂		SCC (Canada)

Programmatic Status: Codes and Standards

- August 2002
 - Workshop to identify needs
 - 5 Year Plan
- Model Codes
 - Approved Hydrogen in ICC Model Codes
 - Training Program for Code Officials
 - Continuation of Ad Hoc Committee
- Experimental Support

Safe Systems

- Safety can be handled through testing, certification, and engineering, just like with any other fuel: No accident can be justified
- Sustained, collaboration between government and industry
 - Identify parameters required by each participant
 - Funding linked to completing comprehensive safety evaluation: hazops, risk assessment and mitigation plan
 - Information exchange and coordination is key

Detection

Sensors

 Safe, reliable, cheap sensors being developed

Placement is important

Odorants

- Diffusion/dispersion matching is difficult
- Poison to fuel cell?

Guidelines for Hydrogen Systems

- The Hydrogen Handbook for Building Code and Fire Safety Officials
- The Hydrogen Sourcebook

1800 Indequadence Avenue, SW Washington, IC 2018 Washington, IC 2018 Bylangue Program 1617 Cole Boolerand Galdon, CO 98181 National Physics Accelerion 1800 M Stown, NW, Salos 180

Typical Hydrogen Site Plan Review

- Confinement
- Review Potential for Ignition
- Minimizing Consequences
- Review the Need for Detectors
- Safety Analysis
- Review Site-Specific Factors
- Personal Investigation

Hydrogen Pipelines

Air Liquide Gulf Coast Pipeline System

Air Products' U.S. Texas Gulf Coast Hydrogen Pipeline System

Air Products' Louisiana Hydrogen Pipeline System

Praxair's Chicago Area Pipeline System

Praxair's U.S. Gulf Coast Hydr

Source: Praxair, Inc.

For more information:

Neil P. Rossmeissl

U.S. Department of Energy

Hydrogen, Fuel Cells and Infrastructure Technologies Program

Tel: 202-586-8668

Email: neil.rossmeissl@ee.doe.gov

www.eren.doe.gov/hydrogen